Perovskite Hollow Fibers with Precisely Controlled Cation Stoichiometry via One-Step Thermal Processing.

نویسندگان

  • Jiawei Zhu
  • Guangru Zhang
  • Gongping Liu
  • Zhengkun Liu
  • Wanqin Jin
  • Nanping Xu
چکیده

The practical applications of perovskite hollow fibers (HFs) are limited by challenges in producing these easily, cheaply, and reliably. Here, a one-step thermal processing approach is reported for the efficient production of high performance perovskite HFs, with precise control over their cation stoichiometry. In contrast to traditional production methods, this approach directly uses earth-abundant raw chemicals in a single thermal process. This approach can control cation stoichiometry by avoiding interactions between the perovskites and polar solvents/nonsolvents, optimizes sintering, and results in high performance HFs. Furthermore, this method saves much time and energy (≈ 50%), therefore pollutant emissions are greatly reduced. One successful example is Ba0.5Sr0.5Co0.8Fe0.2O3-δ HFs, which are used in an oxygen-permeable membrane. This exhibits high oxygen permeation flux values that exceed desired commercial targets and compares favorably with previously reported oxygen-permeable membranes. Studies on other perovskites have produced similarly successful results. Overall, this approach could lead to energy efficient, solid-state devices for industrial application in energy and environmental fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability, cation ordering and oxygen non-stoichiometry of some perovskites and related layered oxides

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Matti Lehtimäki Name of the doctoral dissertation Stability, cation ordering and oxygen non-stoichiometry of some perovskites and related layered oxides Publisher School of Chemical Technology Unit Department of Chemistry Series Aalto University publication series DOCTORAL DISSERTATIONS 118/2013 Field of research Inorganic Che...

متن کامل

Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite

Abstract: The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5`δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5`δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3 ́δ perovskite ...

متن کامل

Influence of PEG Stoichiometry on Structure-Tuned Formation of Self-Assembled Submicron Nickel Particles

Self-assembled submicron nickel particles were successfully synthesized via the one-step surfactant-assisted solvothermal method. The impact of surfactant and reducing agent stoichiometry is investigated in this manuscript. Different morphologies and structures of Ni particles, including flower-like nanoflakes, hydrangea-like structures, chain structures, sphere-like structures, and hollow stru...

متن کامل

Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity

Recent literature indicates that cation non-stoichiometry in proton-conducting perovskite oxides (ABO3) can strongly influence their transport properties. Here we have investigated A-site nonstoichiometry in Ba1 xZr0.8Y0.2O3 d, a candidate electrolyte material for fuel cell and other electrochemical applications. Synthesis is performed using a chemical solution approach in which the barium defi...

متن کامل

Hollow Fibers Networked with Perovskite Nanoparticles for H2 Production from Heavy Oil

Design of catalytic materials has been highlighted to build ultraclean use of heavy oil including liquid-to-gas technology to directly convert heavy hydrocarbons into H2-rich gas fuels. If the H2 is produced from such heavy oil through high-active and durable catalysts in reforming process that is being constructed in hydrogen infrastructure, it will be addressed into renewable energy systems. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Advanced materials

دوره 29 18  شماره 

صفحات  -

تاریخ انتشار 2017